Radial Basis Functions and Level Set Method for Structural Topology Optimization
نویسندگان
چکیده
Level set methods have become an attractive design tool in shape and topology optimization for obtaining lighter and more efficient structures. In this paper, the popular Radial Basis Functions (RBFs) in scattered data fitting and function approximation are incorporated into the conventional level set methods to construct a more efficient approach for structural topology optimization. RBF implicit modeling with multiquadric (MQ) splines is developed to define the implicit level set function with a high level of accuracy and smoothness. A RBF-level set optimization method is proposed to transform the Hamilton-Jacobi partial differential equation (PDE) into a system of ordinary differential equations (ODEs) over the entire design domain by using a collocation formulation of the method of lines. With the mathematical convenience, the original time dependent initial value problem is changed to an interpolation problem for the initial values of the generalized expansion coefficients. A physically meaningful and efficient extension velocity method is presented to avoid possible problems without reinitialization in the level set methods. The proposed method is implemented in the framework of minimum compliance design that has been extensively studied in topology optimization and its efficiency and accuracy over the conventional level set methods are highlighted. Numerical examples show the success of the present RBF-level set method in the accuracy, convergence speed and insensitivity to initial designs in topology optimization of two dimensional (2D) structures. It is suggested that the introduction of the radial basis functions to the level set methods can be promising in structural topology optimization.
منابع مشابه
COMPOSITION OF ISOGEOMETRIC ANALYSIS WITH LEVEL SET METHOD FOR STRUCTURAL TOPOLOGY OPTIMIZATION
In the present paper, an approach is proposed for structural topology optimization based on combination of Radial Basis Function (RBF) Level Set Method (LSM) with Isogeometric Analysis (IGA). The corresponding combined algorithm is detailed. First, in this approach, the discrete problem is formulated in Isogeometric Analysis framework. The objective function based on compliance of particular lo...
متن کاملTOPOLOGY OPTIMIZATION OF PLANE STRUCTURES USING BINARY LEVEL SET METHOD AND ISOGEOMETRIC ANALYSIS
This paper presents the topology optimization of plane structures using a binary level set (BLS) approach and isogeometric analysis (IGA). In the standard level set method, the domain boundary is descripted as an isocountour of a scalar function of a higher dimensionality. The evolution of this boundary is governed by Hamilton–Jacobi equation. In the BLS method, the interfaces of subdomai...
متن کاملIsogeometric Topology Optimization by Using Optimality Criteria and Implicit Function
A new method for structural topology optimization is introduced which employs the Isogeometric Analysis (IA) method. In this approach, an implicit function is constructed over the whole domain by Non-Uniform Rational B-Spline (NURBS) basis functions which are also used for creating the geometry and the surface of solution of the elasticity problem. Inspiration of the level set method zero level...
متن کاملA level set method for structural shape and topology optimization using radial basis functions
This paper presents an alternative level set method for shape and topology optimization of continuum structures. An implicit free boundary representation model is established by embedding structural boundary into the zero level set of a higher-dimensional level set function. An explicit parameterization scheme for the level set surface is proposed by using radial basis functions with compact su...
متن کاملComposition of Isogeometric Analysis with Level Set Method for Structural Topology Optimization
In the present paper, an approach is proposed for structural topology optimization based on combination of Radial Basis Function (RBF) Level Set Method (LSM) with Isogeometric Analysis (IGA). The corresponding combined algorithm is detailed. First, in this approach, the discrete problem is formulated in Isogeometric Analysis framework. The objective function based on compliance of particular lo...
متن کامل